Count type: count#
- class lumen.transforms.base.Count(*, axis, level, numeric_only, controls, name)#
Counts non-nan values in each column of the DataFrame and returns a new DataFrame with a single row with a count for each original column, see pandas.DataFrame.count.
df.count(axis=<axis>, level=<level>, numeric_only=<numeric_only>).to_frame().T
Parameters#
axis
type: int | str
default: 0
The axis to rename. 0 or ‘index’, 1 or ‘columns’
level
type: int | list | str
default: None
The indexes to stack.
numeric_only
type: bool
default: False
Include only float, int or boolean data.
Methods#
- Count.apply(table: DataFrame) DataFrame #
Given a table transform it in some way and return it.
- Parameters:
table (DataFrame) – The queried table as a DataFrame.
- Returns:
A DataFrame containing the transformed data.
- Return type:
DataFrame
- Count.to_spec(context: Dict[str, Any] | None = None) Dict[str, Any] #
Exports the full specification to reconstruct this component.
- Return type:
Resolved and instantiated Component object