Stack type: stack#
- class lumen.transforms.base.Stack(*, dropna, level, controls, name)#
Stack applies pandas.DataFrame.stack to the declared level.
df.stack(<level>)
Parameters#
dropna
type: bool
default: True
Whether to drop rows in the resulting Frame/Series with missing values.Stacking a column level onto the index axis can create combinations ofindex and column values that are missing from the originaldataframe.
level
type: int | list | str
default: -1
The indexes to stack.
Methods#
- Stack.apply(table: DataFrame) DataFrame #
Given a table transform it in some way and return it.
- Parameters:
table (DataFrame) – The queried table as a DataFrame.
- Returns:
A DataFrame containing the transformed data.
- Return type:
DataFrame
- Stack.to_spec(context: Dict[str, Any] | None = None) Dict[str, Any] #
Exports the full specification to reconstruct this component.
- Return type:
Resolved and instantiated Component object